Mitochondria

Mitochondria generate the energy that is needed to power the functions of the cell, but also participate directly in several other cellular processes, including apoptosis, cell cycle control and calcium homeostasis. Mitochondria are distributed throughout the cytoplasm and vary in number between different cell types. Each organelle is enclosed by a double membrane, with the inner one forming the characteristic folds known as cristae. Mutations causing mitochondrial dysfunction are often related to severe diseases. Examples of proteins localized to mitochondria can be seen in Figure 1.

In the Cell Atlas, 1156 genes (6% of all protein-coding human genes) have been shown to encode proteins that localize to mitochondria (Figure 2). A Gene Ontology (GO)-based analysis shows that biological processes related to cellular respiration as well as to organization, gene expression and metabolic processes in mitochondria are highly enriched among the genes encoding mitochondrial proteins. Approximately 48% (n=557) of the mitochondrial proteome localizes to additional cellular compartments, most commonly to the nucleus and/or the cytosol.


LRPPRC - U-2 OS

CHCHD3 - U-2 OS

CS - U-2 OS


PHB2 - U-2 OS

TRAP1 - U-2 OS

IMMT - U-2 OS


PCK2 - A-431

PYCR2 - U-251 MG

PGAM5 - HEK 293

Figure 1. Examples of proteins localized to the mitochondria. LRPPRC might play a role in transcription of mitochondrial genes (detected in U-2 OS cells), CHCHD3 is a protein in the MICOS complex, localized to the mitochondrial inner membrane (detected in U-2 OS cells). CS is active in the citric acid cycle (detected in U-2 OS cells). PHB2 is probably involved in the regulation of mitochondrial respiration activity (detected in U-2 OS cells). TRAP1 is important for maintaining mitochondrial function and polarization (detected in U-2 OS cells). IMMT is, just like CHCHD3, part of the MICOS complex in the inner membrane (detected in U-2 OS cells). PCK2 catalyzes the conversion of oxaloacetate to phosphoenolpyruvate (detected in A-431 cells). PYCR2 catalyzes the last step in proline biosynthesis (detected in U-251 MG cells). PGAM5 may be a regulator of mitochondrial dynamics (detected in HEK 293 cells).

  • 6% (1156 proteins) of all human proteins have been experimentally detected in the mitochondria by the Human Protein Atlas.
  • 502 proteins in the mitochondria are supported by experimental evidence and out of these 127 proteins are enhanced by the Human Protein Atlas.
  • 557 proteins in the mitochondria have multiple locations.
  • 343 proteins in the mitochondria show a cell to cell variation. Of these 323 show a variation in intensity and 21 a spatial variation.

  • Mitochondrial proteins are mainly involved in cellular respiration and in mitochondrial organization, gene expression and metabolic processes.

Figure 2. 6% of all human protein-coding genes encode proteins localized to the mitochondria. Each bar is clickable and gives a search result of proteins that belong to the selected category.

The structure of mitochondria

The mitochondrion was first described in 1890 by Richard Altmann. It is approximately 0.5-1 μm long and is enclosed by an outer and inner membrane, with an intermembrane space in between. The folds of the inner membrane, denoted cristae, enclose the aqueous matrix, which contains the mitochondrial DNA (mtDNA) and the majority of the mitochondrial proteins (Nunnari J et al. (2012)). The mitochondrion is the only organelle in animals to possess a small genome of its own, consisting of 37 genes in a circular genome, with maternal inheritance. Of these genes, 13 encode proteins in the respiratory chain, 22 encode transfer RNAs and 2 encode mitochondrial ribosomal RNAs (Friedman JR et al. (2014). However, the mitochondrial proteome has been estimated to contain around 1000-1500 proteins, and thus the great majority are encoded by nuclear genes and imported into mitochondria (Nunnari J et al. (2012); Nunnari J et al. (2012); Friedman JR et al. (2014); Calvo SE et al. (2010). Table 1 contains a list of proteins suitable as markers for mitochondria, while Table 2 contains highly expressed genes that encode mitochondrial proteins.

Table 1. Selection of proteins suitable as markers for mitochondria.

Gene Description Substructure
CS Citrate synthase Mitochondria
LRPPRC Leucine rich pentatricopeptide repeat containing Mitochondria
SLC25A24 Solute carrier family 25 member 24 Mitochondria
TIMM44 Translocase of inner mitochondrial membrane 44 Mitochondria
GCDH Glutaryl-CoA dehydrogenase Mitochondria
TRAP1 TNF receptor associated protein 1 Mitochondria

Table 2. Highly expressed single localizing mitochondrial proteins across different cell lines.

Gene Description Average NX
MT-CO1 Mitochondrially encoded cytochrome c oxidase I 207
MT-ND4 Mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 4 130
MT-CYB Mitochondrially encoded cytochrome b 109
ATP5F1B ATP synthase F1 subunit beta 92
SLC25A3 Solute carrier family 25 member 3 73
COX4I1 Cytochrome c oxidase subunit 4I1 72
ATP5MD ATP synthase membrane subunit DAPIT 67
ATP5F1A ATP synthase F1 subunit alpha 63
ATP5PD ATP synthase peripheral stalk subunit d 62
HSPD1 Heat shock protein family D (Hsp60) member 1 60

The numbers of mitochondria varies between cell types and according to the energy needs of individual cells. Mitochondria are continuously undergoing fission and fusion, which allows for regulation of the number of mitochondria as well as communication and exchange of mitochondrial components between individual mitochondria. Loss of mitochondrial fission/fusion function is associated with defects in oxidative phosphorylation, or loss of mtDNA (Friedman JR et al. (2014)). The morphology of mitochondria varies between different cell types, as shown in the examples of Figure 3.


ALDH5A1 - CACO-2

NIPSNAP2 - SH-SY5Y

NDUFAF2 - MCF7


PCK2 - Hep G2

MAOA - RT4

SDHA - HeLa

Figure 3. Examples of the morphology of mitochondria in different cell lines, represented by immunofluorescent staining of different mitochondrial proteins. ALDH5A1 in CACO-2 cells, NIPSNAP2 in SH-SY5Y cells and NDUFAF2 in MCF-7 cells. PCK2 in Hep-G2 cells, MAOA in RT-4 cells and SDHA in HeLa cells.


Figure 4. 3D-view of mitochondria in U-2 OS, visualized by immunofluorescent staining of CS. The morphology of mitochondria in human induced stem cells can be seen in the Allen Cell Explorer.

The function of mitochondria

Mitochondria are well-known for their function of generating ATP through the electron transport chain and ATP synthase, located in the inner membrane, in a process known as oxidative phosphorylation. However, mitochondria are also involved in several other cellular processes, including regulation of metabolism, calcium homeostasis and cell signaling (McBride HM et al. (2006)). They also have an important role in cell cycle control, cell growth and differentiation, and apoptosis.

The incidence of mitochondrial disorders has been estimated to 1 in 5000 individuals or higher, making it one of the most common types of heritable human diseases (Schaefer AM et al. (2004)). These disorders can be caused by mutations in mitochondrial and/or nuclear DNA, and phenotypically different diseases may stem from mutations in the same protein complexes (Nunnari J et al. (2012)).

Gene Ontology (GO)-based analysis of genes encoding proteins that localize to mitochondria shows enrichment of terms that are well in-line with the known functions of mitochondria. The most highly enriched terms for biological processes are related to mitochondrial RNA metabolic processes, mitochondrial translation and cellular respiration (Figure 5a). Enrichment analysis of molecular function also shows significant enrichment for terms related to energy production, such as NADH dehydrogenase and oxidoreductase activity, as well as protein transmembrane transporter activity (Figure 5b).

Figure 5a. Gene Ontology-based enrichment analysis for the mitochondria proteome showing the significantly enriched terms for the GO domain Biological Process. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Figure 5b. Gene Ontology-based enrichment analysis for the mitochondria proteome showing the significantly enriched terms for the GO domain Molecular Function. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Mitochondria proteins with multiple locations

Of the mitochondrial proteins detected in the Cell Atlas, 48% (n=557) also localize to other cellular compartments (Figure 6). The network plot shows that the most common locations shared with mitochondria are cytosol, nucleoplasm and nucleoli, with proteins localizing to mitochondria and nucleoplasm or nucleoli being overrepresented. Localization to both mitochondria and nucleus could highlight proteins functioning gene expression, which occurs in both of these compartments. Examples of mitochondrial proteins also localizing to other cellular compartments are shown in Figure 7.

Figure 6. Interactive network plot of mitochondrial proteins with multiple localizations. The numbers in the connecting nodes show the proteins that are localized to the mitochondria and to one or more additional locations. Only connecting nodes containing more than one protein and at least 0.5% of proteins in the mitochondrial proteome are shown. The circle sizes are related to the number of proteins. The cyan colored nodes show combinations that are significantly overrepresented, while magenta colored nodes show combinations that are significantly underrepresented as compared to the probability of observing that combination based on the frequency of each annotation and a hypergeometric test (p≤0.05). Note that this calculation is only done for proteins with dual localizations. Each node is clickable and results in a list of all proteins that are found in the connected organelles.


CCDC51 - U-2 OS

FAM162A - U-251 MG

COX7A2L - PC-3

Figure 7. Examples of multilocalizing proteins in the mitochondrial proteome. The examples show common or overrepresented combinations for multilocalizing proteins in the mitochondrial proteome. CCDC51 is an uncharacterized protein localized to both the nucleoplasm and mitochondria (detected in U-2 OS cells). FAM162A has been proposed to be involved in regulation of apoptosis (detected in U-251 MG cells). COX7A2L is an uncharacterized protein (detected in PC-3 cells).

Expression levels of mitochondria proteins in tissue

Transcriptome analysis and classification of genes into tissue distribution categories (Figure 8) shows that a larger portion of genes encoding mitochondrial proteins are detected in all tissues, while smaller portions are detected in some or in many tissues, compared to all genes presented in the Cell Atlas. This is in agreement with the roles of mitochondria in basic and essential functions in all cells of the human body.

Figure 8. Bar plot showing the percentage of genes in different tissue distribution categories for mitochondria-associated protein-coding genes, compared to all genes in the Cell Atlas. Asterisk marks a statistically significant deviation (p≤0.05) in the number of genes in a category based on a binomial statistical test. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Relevant links and publications

Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y

Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8

Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7

Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130

Liao J et al., Single-cell RNA sequencing of human kidney. Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8

MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7

Vieira Braga FA et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. (2019)
PubMed: 31209336 DOI: 10.1038/s41591-019-0468-5

Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6

Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117

Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4

Henry GH et al., A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Rep. (2018)
PubMed: 30566875 DOI: 10.1016/j.celrep.2018.11.086

Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4

Guo J et al., The adult human testis transcriptional cell atlas. Cell Res. (2018)
PubMed: 30315278 DOI: 10.1038/s41422-018-0099-2

Uhlen M et al., A proposal for validation of antibodies. Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995

Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030

Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199

Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821

Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005

Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453

Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771

Pollard TD et al., Actin, a central player in cell shape and movement. Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862

Mitchison TJ et al., Actin-based cell motility and cell locomotion. Cell. (1996)
PubMed: 8608590 

Pollard TD et al., Molecular Mechanism of Cytokinesis. Annu Rev Biochem. (2019)
PubMed: 30649923 DOI: 10.1146/annurev-biochem-062917-012530

dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002

Campellone KG et al., A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867

Rottner K et al., Actin assembly mechanisms at a glance. J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433

Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1

HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. (1954)
PubMed: 13165697 

HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. (1954)
PubMed: 13165698 

Svitkina T., The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267

Kelpsch DJ et al., Nuclear Actin: From Discovery to Function. Anat Rec (Hoboken). (2018)
PubMed: 30312531 DOI: 10.1002/ar.23959

Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602

Massagué J., G1 cell-cycle control and cancer. Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094

Hartwell LH et al., Cell cycle control and cancer. Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877

Barnum KJ et al., Cell cycle regulation by checkpoints. Methods Mol Biol. (2014)
PubMed: 24906307 DOI: 10.1007/978-1-4939-0888-2_2

Weinberg RA., The retinoblastoma protein and cell cycle control. Cell. (1995)
PubMed: 7736585 DOI: 10.1016/0092-8674(95)90385-2

Morgan DO., Principles of CDK regulation. Nature. (1995)
PubMed: 7877684 DOI: 10.1038/374131a0

Teixeira LK et al., Ubiquitin ligases and cell cycle control. Annu Rev Biochem. (2013)
PubMed: 23495935 DOI: 10.1146/annurev-biochem-060410-105307

King RW et al., How proteolysis drives the cell cycle. Science. (1996)
PubMed: 8939846 DOI: 10.1126/science.274.5293.1652

Cho RJ et al., Transcriptional regulation and function during the human cell cycle. Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751

Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.

Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772

Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456

Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047

Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630

Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031

Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534

Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124

Snijder B et al., Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044

Thul PJ et al., A subcellular map of the human proteome. Science. (2017)
PubMed: 28495876 DOI: 10.1126/science.aal3321

Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28

Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01

Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates. Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9

Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021

Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033

Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264

Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391

Kilfoil ML et al., Stochastic variation: from single cells to superorganisms. HFSP J. (2009)
PubMed: 20514130 DOI: 10.2976/1.3223356

Ansel J et al., Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. (2008)
PubMed: 18404214 DOI: 10.1371/journal.pgen.1000049

Colman-Lerner A et al., Regulated cell-to-cell variation in a cell-fate decision system. Nature. (2005)
PubMed: 16170311 DOI: 10.1038/nature03998

Liberali P et al., Single-cell and multivariate approaches in genetic perturbation screens. Nat Rev Genet. (2015)
PubMed: 25446316 DOI: 10.1038/nrg3768

Elowitz MB et al., Stochastic gene expression in a single cell. Science. (2002)
PubMed: 12183631 DOI: 10.1126/science.1070919

Kaern M et al., Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. (2005)
PubMed: 15883588 DOI: 10.1038/nrg1615

Bianconi E et al., An estimation of the number of cells in the human body. Ann Hum Biol. (2013)
PubMed: 23829164 DOI: 10.3109/03014460.2013.807878

Malumbres M., Cyclin-dependent kinases. Genome Biol. (2014)
PubMed: 25180339 

Collins K et al., The cell cycle and cancer. Proc Natl Acad Sci U S A. (1997)
PubMed: 9096291 

Zhivotovsky B et al., Cell cycle and cell death in disease: past, present and future. J Intern Med. (2010)
PubMed: 20964732 DOI: 10.1111/j.1365-2796.2010.02282.x

Cho RJ et al., A genome-wide transcriptional analysis of the mitotic cell cycle. Mol Cell. (1998)
PubMed: 9702192 

Spellman PT et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. (1998)
PubMed: 9843569 

Orlando DA et al., Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. (2008)
PubMed: 18463633 DOI: 10.1038/nature06955

Rustici G et al., Periodic gene expression program of the fission yeast cell cycle. Nat Genet. (2004)
PubMed: 15195092 DOI: 10.1038/ng1377

Uhlén M et al., Tissue-based map of the human proteome. Science (2015)
PubMed: 25613900 DOI: 10.1126/science.1260419

Nigg EA et al., The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. (2011)
PubMed: 21968988 DOI: 10.1038/ncb2345

Doxsey S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol. (2001)
PubMed: 11533726 DOI: 10.1038/35089575

Bornens M., Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. (2002)
PubMed: 11792541 

Conduit PT et al., Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. (2015)
PubMed: 26373263 DOI: 10.1038/nrm4062

Tollenaere MA et al., Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci. (2015)
PubMed: 25173771 DOI: 10.1007/s00018-014-1711-3

Prosser SL et al., Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci. (2020)
PubMed: 31896603 DOI: 10.1242/jcs.239566

Rieder CL et al., The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. (2001)
PubMed: 11567874 

Badano JL et al., The centrosome in human genetic disease. Nat Rev Genet. (2005)
PubMed: 15738963 DOI: 10.1038/nrg1557

Clegg JS., Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. (1984)
PubMed: 6364846 

Luby-Phelps K., The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. (2013)
PubMed: 23989722 DOI: 10.1091/mbc.E12-08-0617

Luby-Phelps K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. (2000)
PubMed: 10553280 

Ellis RJ., Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. (2001)
PubMed: 11590012 

Bright GR et al., Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. (1987)
PubMed: 3558476 

Kopito RR., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. (2000)
PubMed: 11121744 

Aizer A et al., Intracellular trafficking and dynamics of P bodies. Prion. (2008)
PubMed: 19242093 

Carcamo WC et al., Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol. (2014)
PubMed: 24411169 DOI: 10.1016/B978-0-12-800097-7.00002-6

Lang F., Mechanisms and significance of cell volume regulation. J Am Coll Nutr. (2007)
PubMed: 17921474 

Schwarz DS et al., The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. (2016)
PubMed: 26433683 DOI: 10.1007/s00018-015-2052-6

Friedman JR et al., The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. (2011)
PubMed: 21900009 DOI: 10.1016/j.tcb.2011.07.004

Travers KJ et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. (2000)
PubMed: 10847680 

Roussel BD et al., Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. (2013)
PubMed: 23237905 DOI: 10.1016/S1474-4422(12)70238-7

Neve EP et al., Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr Opin Drug Discov Devel. (2010)
PubMed: 20047148 

Kulkarni-Gosavi P et al., Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett. (2019)
PubMed: 31378930 DOI: 10.1002/1873-3468.13567

Short B et al., The Golgi apparatus. Curr Biol. (2000)
PubMed: 10985372 DOI: 10.1016/s0960-9822(00)00644-8

Wei JH et al., Unraveling the Golgi ribbon. Traffic. (2010)
PubMed: 21040294 DOI: 10.1111/j.1600-0854.2010.01114.x

Wilson C et al., The Golgi apparatus: an organelle with multiple complex functions. Biochem J. (2011)
PubMed: 21158737 DOI: 10.1042/BJ20101058

Farquhar MG et al., The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. (1998)
PubMed: 9695800 

Brandizzi F et al., Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. (2013)
PubMed: 23698585 DOI: 10.1038/nrm3588

Potelle S et al., Golgi post-translational modifications and associated diseases. J Inherit Metab Dis. (2015)
PubMed: 25967285 DOI: 10.1007/s10545-015-9851-7

Leduc C et al., Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol. (2015)
PubMed: 25660489 DOI: 10.1016/j.ceb.2015.01.005

Lowery J et al., Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. J Biol Chem. (2015)
PubMed: 25957409 DOI: 10.1074/jbc.R115.640359

Robert A et al., Intermediate filament dynamics: What we can see now and why it matters. Bioessays. (2016)
PubMed: 26763143 DOI: 10.1002/bies.201500142

Fuchs E et al., Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. (1994)
PubMed: 7979242 DOI: 10.1146/annurev.bi.63.070194.002021

Janmey PA et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. (1991)
PubMed: 2007620 

Köster S et al., Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol. (2015)
PubMed: 25621895 DOI: 10.1016/j.ceb.2015.01.001

Herrmann H et al., Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. (2007)
PubMed: 17551517 DOI: 10.1038/nrm2197

Gauster M et al., Keratins in the human trophoblast. Histol Histopathol. (2013)
PubMed: 23450430 DOI: 10.14670/HH-28.817

Janke C., The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol. (2014)
PubMed: 25135932 DOI: 10.1083/jcb.201406055

Goodson HV et al., Microtubules and Microtubule-Associated Proteins. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29858272 DOI: 10.1101/cshperspect.a022608

Wade RH., On and around microtubules: an overview. Mol Biotechnol. (2009)
PubMed: 19565362 DOI: 10.1007/s12033-009-9193-5

Desai A et al., Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. (1997)
PubMed: 9442869 DOI: 10.1146/annurev.cellbio.13.1.83

Conde C et al., Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. (2009)
PubMed: 19377501 DOI: 10.1038/nrn2631

Wloga D et al., Post-translational modifications of microtubules. J Cell Sci. (2010)
PubMed: 20930140 DOI: 10.1242/jcs.063727

Schmoranzer J et al., Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell. (2003)
PubMed: 12686609 DOI: 10.1091/mbc.E02-08-0500

Skop AR et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. (2004)
PubMed: 15166316 DOI: 10.1126/science.1097931

Waters AM et al., Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. (2011)
PubMed: 21210154 DOI: 10.1007/s00467-010-1731-7

Matamoros AJ et al., Microtubules in health and degenerative disease of the nervous system. Brain Res Bull. (2016)
PubMed: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016

Jordan MA et al., Microtubules as a target for anticancer drugs. Nat Rev Cancer. (2004)
PubMed: 15057285 DOI: 10.1038/nrc1317

Nunnari J et al., Mitochondria: in sickness and in health. Cell. (2012)
PubMed: 22424226 DOI: 10.1016/j.cell.2012.02.035

Friedman JR et al., Mitochondrial form and function. Nature. (2014)
PubMed: 24429632 DOI: 10.1038/nature12985

Calvo SE et al., The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. (2010)
PubMed: 20690818 DOI: 10.1146/annurev-genom-082509-141720

McBride HM et al., Mitochondria: more than just a powerhouse. Curr Biol. (2006)
PubMed: 16860735 DOI: 10.1016/j.cub.2006.06.054

Schaefer AM et al., The epidemiology of mitochondrial disorders--past, present and future. Biochim Biophys Acta. (2004)
PubMed: 15576042 DOI: 10.1016/j.bbabio.2004.09.005